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We demonstrate that nonlinear decay of obliquely propagating Langmuir waves into Langmuir and Alfvén
waves �L→L�+A� is possible in a one-dimensional, highly relativistic, streaming pair plasma. Such a plasma
may be in the magnetospheres of pulsars. It is shown that the characteristic frequency of generated Alfvén
waves is much less than the frequency of Langmuir waves and may be consistent with the observational data
on the radio emission of pulsars.
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I. INTRODUCTION

It is generally believed that a coherent �brightness tem-
peratures up to �1030 K� radio emission of pulsars is gen-
erated by plasma instabilities in the one-dimensional, relativ-
istic plasma consisting of electron-positron pairs �e.g., �1��.
Such pairs may be produced by � rays via electromagnetic
cascades in the vicinity of the magnetic poles of pulsars that
are identified with strongly magnetized ��109–1013 G�,
rotation-powered neutron stars. Created particles very rap-
idly lose the momentum component transverse to the mag-
netic field and flow away along the open magnetic field lines
with Lorenz factors ranging from �min�10 to �max�103. A
two-stream instability was proposed as a mechanism of radio
emission of pulsars soon after their discovery �2�. Later, us-
ing the available models of pulsar magnetospheres it was
argued that if the plasma outflow is stationary, the two-
stream instability does not have enough time to be developed
before the plasma escapes the pulsar magnetosphere �for a
review, see �3��. It was argued �4,5� that the process of pair
creation near the pulsar surface is strongly nonstationary and
that the pair plasma gathers into separate clouds spaced by
l�106 cm along the direction of its outflow. In this case, at
the distance ri�2l�min

2 �108 cm from the neutron star, fast
����max� particles of one plasma cloud overtake slow ��
��min� particles of the preceding cloud and mutual overlap-
ping of the clouds begins. In the overlapping region, there
are, in fact, two steams of slow and fast particles, and the
condition for the development of two-stream instability is
created �6�. For typical parameters of pair plasma in the pul-
sar magnetospheres the growth rate of the instability is quite
sufficient for its development �see below�.

The frequency of Langmuir �L� waves generated at the
distance ri from the neutron star is a few 10 times higher
than the typical frequency of pulsar radio emission �see �7�
and below�. Therefore, the wave frequency has to decrease
significantly because of some processes to be compatible
with the observational data. In this paper, we discuss the
process of conversion of L waves into low-frequency Alfvén
�A� waves that can solve the high-frequency problem.

II. BASIC EQUATIONS

We consider pair plasma in the external uniform magnetic
field B0 directed along the z axis. The behavior of this

plasma may be described by the Vlasov and Maxwell equa-
tions
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where f� is the distribution function for the particles of type
�, which is normalized so that 	f�dpz=n�, n0=
�n� is the

particle density, B�B0+ B̃, B̃ is the magnetic field perturba-
tion, and j=
�e�	vf�dpz is the current density.

Our study of nonlinear phenomena will be performed in
the frame of the weak turbulence theory. The particle distri-
bution functions and the current density may be written in
the perturbation manner

f� = f�
�0� + f�

�1� + f�
�2� + ¯ , j = j�0� + j�1� + j�2� + ¯ . �3�

Here the unperturbed distribution function f�
�0� is assumed to

be stationary and homogenous.
Besides, we use the infinite magnetic field approximation

�for finite magnetic field effects, see �8��. In this approxima-
tion, the distribution function f� is one dimensional in the
velocity space �v �B0� and depends only on vz. Technically,
this means that only the z component of j�i� is nonzero,

jz
�i� = 


�

e�
 vzf�
�i�dpz. �4�

In this case from Eqs. �1� and �3� we have
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where the angular brackets denote an average over one pul-
sation.

Performing Fourier transformation with respect to tempo-
ral and spatial variables, Eq. �6� for i=1,2 yields
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where k̄��k ,��. The first- �f�
�1�� and second- �f�

�2�� order
perturbations describe the linear dynamics of plasma and
three-wave resonant processes, respectively.

Without loss of generality we assume that the wave vector
k lies in the x ,z plane. From Eqs. �2�, �4�, and �7� it can be
shown that there are the following three fundamental modes
of pair plasma �e.g., �9��. The first one is the extraordinary
wave with the electric field perpendicular to the k ,B0 plane.
The other two modes are L waves generated in the develop-
ment of the two-steam instability and A waves into which L
waves may be converted �see below�. For both these modes
their electric fields lie in the k ,B0 plane.

In the infinite magnetic field approximation when only
one component ��zz� of the linear permittivity tensor is non-
zero �9�,

�zz = 1 − 

�

�p
2
 F�

�3�� − kzvz�2dpz, �9�

for rather low wave numbers

kz
2c2 � 2�p

2��−3�, �kzkx�c2 � 2�p
2��−3� , �10�

the dispersion relations can be written in the form

�L
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2��−3� + 3kz
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for quasilongitudinal L waves and

�A
2 = kz

2c2�1 −
kx

2c2

2�p
2���1 + vz/c�2�� �12�

for quasitransversal A waves, where F�= f�
�0� /n�, so that

	F�dpz=1, �p= �4�e2n0 /me�1/2 is the plasma frequency, and
�¯��	¯F�dpz.

If the conditions �10� are fulfilled for A waves, the ratio of
their electric field components is
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III. GENERATION OF L WAVES
AND THEIR EVOLUTION

We consider the model where L waves are generated by
the two-stream instability that develops at the distance ri
�108 cm from the neutron star surface because of overlap
of the pair plasma clouds ejected from the pulsar �10�. Be-
low, all calculations are done in the plasma frame where the

mean vector velocity of the cloud particles is zero. We as-
sume that in the regions where the plasma clouds overlap the
densities of the slow and fast particles are the same �for the
development of two-stream instability for an arbitrary distri-
bution function of plasma particles, see �10��. In this case the
Lorentz factor of the plasma frame in the pulsar frame is
�p���max�min�1/2�102.

The two-stream instability starts developing when the
cloud overlap is very slight, and in the overlapping regions
the momentum spreads of the slow and fast particles are
small �10�; i.e., the distribution function roughly is F�

��	�pz− p0�+	�pz+ p0��, where p0=�0mec and �0��1 /2�
���max /�min�1/2�5. For L waves with kx=0 the dispersion
equation �zz=0 provides the maximum growth rate 
max
��p / ��2�0

3/2� which is achieved at kz,opt=�6�p / �2V0�0
3/2�,

where V0�c is the particle velocity corresponding to the
momentum p0. Obliquely propagating L waves �kx�0� are
also generated by the two-stream instability. For such waves
with kx�kz the growth rate is �
max �11�. The characteristic
frequency of generated L waves is ��p��0�1/2��p�0

1/2

�6,10�.
When the amplitudes of generated L waves become large

enough, linear approximation is not valid anymore and the
lowest-order nonlinear process called quasilinear relaxation
starts up �12�. This process may be described by Eq. �5�, and
its characteristic time is

�QL � 
�0
3/2/�p, �14�

where 
 is the Coulomb logarithm. The quasilinear relax-
ation results in the distribution function of particles having
the shape of a plateau up to the Lorentz factor of ��0; i.e.,
F� is ��0

−1 at ���0 and nearly zero at ���0. Further gen-
eration of A waves is cut off.

After the stage of quasilinear relaxation the induced scat-
tering of L waves by plasma particles becomes the dominant
nonlinear process �12�. The characteristic time of this pro-
cess is

�IS � 

�0

3/2

�p

n0�0mc2

WL
, �15�

where WL is the energy density of L waves. The induced
scattering transfers the wave energy from the frequency re-
gion where L waves are generated ����p���1/2��p�0

1/2 and
kz�kz,opt� to the low-frequency region ����p��−3�1/2

��p�0
−1/2 and kz��p���� /c��p�0

1/2 /c�; i.e., the mean fre-
quency of L waves decreases ��0�5 times. Here, we used
that ��n���0

n for n�0 and ��−n���0
−1 for n�1.

IV. NONLINEAR DECAY L\L�+A

The process of nonlinear conversion of L waves into A
waves, L→L�+A �and any other three-waves process�, is
described by the second-order current. From Eqs. �4� and �8�
this current can be written as
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where Ez=Ez
L+Ez

A in the general case when both L and A
waves participate in the process.

The distribution functions of electrons and positrons cre-
ated via electromagnetic processes are identical. In such a
pair plasma all three-waves processes are absent. This is be-
cause the second-order current j�2� is proportional to e3 and
the summation in �16� over electrons and positrons gives
jz
�2�=0. However, in the process of outflow of pair plasma

along the curved magnetic field lines, the distribution func-
tions of electrons and positrons are shifted with respect to
each other to maintain the electric neutrality of the plasma
�13�. This results in the mean Lorentz factors of electrons
��̄e� and positrons ��̄p� slightly differing, ��= ��̄e− �̄p��1.

For L waves shifted to the low-frequency region by in-
duced scattering, there is no solution of the resonant condi-
tions �L=�L1

+�L2
and kL=kL1

+kL2
. Therefore, the process

L→L1+L2 is kinematically forbidden and we can omit all

terms proportional to Ez
L�k̄�Ez

L�k̄− k̄�� in Eq. �16�. Taking into
account that �L�kLc and �A�kAc for low-frequency L
waves and A waves, respectively, from Eqs. �13� and �16� we
obtain

− i�� − �L�Ez
L =
 dk̄ VL�AEz

L�k̄ − k̄��Ex
A�k̄�� , �17�

where

VL�A �
4�e3n0

2���

m2c�p�A�0
1/2 �18�

is the matrix element of interaction that, together with the
resonant conditions

�L = �L� + �A and kL = kL� + kA, �19�

totally determines the conversion process L→L�+A.
To describe the frequency change in the process

L→L�+A, it is convenient to introduce the ration of the
frequency of generated A waves to the mean frequency of
the low-frequency L waves, �A��A / ��2��−3�1/2�p�
��A / ��2�0

−1/2�p�. The results of numerical solution of the
resonant conditions �19� are shown in Fig. 1 where the di-
mensionless wave number is used, Kx,y

L �kx,y
L c / ��2��−3��p�.

We can see that for the typical parameters the frequency of
generated A waves is about 2 orders of magnitude less than
the mean frequency of L waves. To clarify our numerical
results presented in Fig. 1 we can find the approximate ana-
lytical solution of the resonant conditions �19� for obliquely

propagating L waves, �A��Kx
L�2�Kz

L�2 /2�1 at Kx
L�=0.

From this solution it follows that for rather small wave num-
bers of L waves the frequency of generated A waves is al-
ways much less than the characteristic frequency of L waves.

Using the standard technique of weak turbulence theory
�e.g., �14��, the characteristic time scale of nonlinear decay

L→L�+A for the waves with random phases may be written
as

�NLA �
�L

2

WLVL�A
2

�A

. �20�

V. NUMERICAL ESTIMATES AND DISCUSSION

If we assume that in the plasma frame the frequency of
radio emission coincides with the mean frequency of L
waves generated by the two-stream instability at the distance
ri, the characteristic frequency of the radio emission in the
pulsar frame is

�L � 10�B12M�p�0/P0.1�1/2�R/ri�3/2 GHz, �21�

where B12 is the magnetic field at the neutron star surface in
units of 1012 G, P0.1 is the period of the pulsar rotation in
units of 0.1 s, R�106 cm is the neutron star radius, and M is
a so-called multiplicity factor, which is equal to the ratio of
the pair plasma density to the density of primary particles
�7�. In early papers where only the curvature radiation of
primary particles was considered as the mechanism of gen-
eration of � rays, the pair multiplicity is rather high, M
�103–104 �5,15�. Later, it was shown that generation of �
rays by inverse Compton scattering is essential near at least
some pulsars �16�. In this case the value of M may be as
small as �1–10. For plausible parameters �e.g., �p�102,
�0�5, M �10–103, B12�1, P0.1�1, and ri /R=50� Eq. �21�
yields �L�2–20 GHz, which is about an order of magni-
tude larger than the typical frequency of pulsar radio emis-
sion.

In this paper we discussed the following sequence of pro-
cesses in the magnetospheres of pulsars: �a� the development
of two-stream instability in collisions of plasma clouds and
generation of L waves, �b� quasilinear relaxation of two-
stream instability, �c� induced scattering of generated L
waves by plasma particles and decrease of the mean fre-
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FIG. 1. Dimensionless frequency of A waves generated in the
process L→L�+A as a function of z component of dimensionless
wave number of L waves before their decay for different param-

eters: Kx
L=0.5, Kx

L�=0 �solid line�, Kx
L=0.7, Kx

L�=0 �dashed line�,
and Kx

L=0.7, Kx
L�=0.4 �dash-dotted line�.
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quency of L waves, and �d� nonlinear conversion of L waves
into low-frequency A waves. For plausible parameters of the
pulsar plasma defined above and for Kx,z

L =0.3 and WL
�0.1n0�0mc2, the characteristic times of these processes in
the plasma frame are �i= �
max�−1�10−8 s, �QL�10−7 s,
�IS�10−6 s, and �NLA�10−6 s, respectively. These times
are at least an order of magnitude smaller than the character-
istic time of the plasma outflow, �out�ri / �c�p��2�10−5 s.
Therefore, all these processes have enough time to be devel-
oped in the magnetospheres of pulsars. We have shown that
the frequency of A waves is a few 10 times smaller than the
frequency of generated L waves and may be consistent with
the observational data on the radio emission of pulsars.

Gedalin, Gruman, and Melrose �17� proposed another
mechanism of pulsar radio emission that also involves the
two-stream instability and solves successfully the high-
frequency problem at least for the main part of known pul-
sars. In this mechanism obliquely propagating electromag-
netic waves are directly generated by the instability. At
present, the mechanism by Gedalin et al. has an advantage
over our mechanism because electromagnetic waves gener-
ated by their mechanism can escape from the magneto-
spheres of pulsars �provided cyclotron absorption is unim-
portant� while it was argued �e.g., �18�� that A waves are
subject to strong Landau damping and cannot be observed
far from the pulsar �but see �19��. However, in the simple

model used in �18� it was assumed that the magnetosphere
plasma is stationary and that the plasma density declines in
proportion to r−3 without other variations. These assumptions
are invalid in our case where the pair plasma outflow is non-
stationary and strongly nonuniform across and along the
magnetic field lines �5,6�. At the edges of the plasma clouds
the density falls down sharply and significantly, and A waves
may be converted into nondamping waves that escape as
radio emission. Besides, in the spaces between the plasma
clouds the density and Landau damping of A waves may be
small. A study of these effects is beyond the framework of
this paper and will be addressed elsewhere.

In turn, our mechanism has an advantage over the mecha-
nism by Gedalin et al. for pulsars with the maximum of the
radio spectra at very low frequencies ��102 MHz� because
the mean frequency of radio emission in our mechanism may
be an order less than the same in the mechanism by Gedalin
et al.
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